

## Calculation Policy

To be reviewed June 2025
Reviewed June 2023
Reviewed June 2021
Written June 2020

At West Felton CofE Primary School we believe that children should be introduced to the processes of calculation through practical, oral and mental activities. As children begin to understand the underlying ideas they develop ways of recording to support their thinking and calculation methods, use particular methods that apply to special cases, and learn to interpret and use the signs and symbols involved.

Choosing the appropriate strategy, recording in mathematics and in calculation in particular is an important tool both for furthering the understanding of ideas and for communicating those ideas to others. A useful written method is one that helps children carry out a calculation and can be understood by others.

Written methods are complementary to mental methods and should not be seen as separate from them. The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use an efficient written method accurately and with confidence. It is important children acquire secure mental methods of calculation and one efficient written method of calculation for addition, subtraction, multiplication and division which they know they can rely on when mental methods are not appropriate.

This document identifies progression in calculation strategies rather than specifying which method should be taught in a particular year group.

Children will move on to the next stage when:

1) they are ready.
2) they are confident.

By the end of Year 6, children should be able to choose the most appropriate approach to solve a problem: making a choice between using jottings (an extended written method), an efficient written method or a mental method.

This policy contains the key pencil and paper procedures that will be taught within our school alongside practical resources. It has been written to ensure consistency and progression throughout the school and reflects a whole school agreement.

## West Felton CofE Calculation Policy

## Reviewed 07/06/23

## Addition

## EYFS - Reception

Children at the expected level of development will:
-Have a deep understanding of number to 10, including the composition of each number
-Subitise (recognise quantities without counting) up to 5
-Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts.
-Verbally count beyond 20, recognising the pattern of the counting system; -
-Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity

| Key Vocabulary: <br> add, more, and, make, sum, total, altogether, double, one <br> more, two more, ten more..., subitize, how many more to <br> make... ?, how many more is... than...? | Key Resources: <br> Physical/ concrete counting objects, number lines, Numicon, tens <br> frame, Numberblocks |
| :--- | :--- |
| Method: | Example/ Representation: |
| Using a range of practical resources and real life contexts, <br> pupils develop their understanding of the concept of <br> addition through counting activities. | How many dinosaurs are there? |
| Children are introduced to the addition symbol (+) and <br> use pictures/ diagrams to represent the calculation. | There are 2 strawberries on a plate and 2 more are added, how <br> many altogether? |
| Store the larger number mentally and use fingers to count <br> on. | Count on from the larger number. A child will choose the larger number, <br> even when it is not the first and count on from there; (5 in your head) |
| 'six, seven, eight' using their fingers: |  |

## West Felton CofE Calculation Policy

Children can instantly recognise the value of a number with the Numicon shape, they can add the vale of each piece to find the total.


## Mental Strategies:

- Develop a mental image of the number system.
- Understand the value of a number
- Counting forwards and backwards
- Recall of number bonds to 10


## West Felton CofE Calculation Policy

## Addition

## Year 1:

-read, write and interpret mathematical statements involving addition (+), and equals (=) signs

- represent and use number bonds and related addition facts within 20
- add one-digit and two-digit numbers to 20, including zero
- solve one-step problems that involve addition, using concrete objects and pictorial representations, and missing number problems such as $7=2+$


## Key Vocabulary: $\quad$ Key Resources:

number bonds, add, more, plus, make, sum, total, altogether, inverse, near double, equals, missing number, is the same as (including equals sign), parts and wholes, one more, two more... ten more, how many more to make...?, how many more is... than...?, how much more is...?

| Method: <br> (Continuing to build on from previous years) | Example/ Representation: <br> (Continuing to build on from previous years) |
| :---: | :---: |
| Children will be taught to use a number line to support addition. Children will be taught how to solve simple addition stories with the support of a 100 number square. <br> Encourage children to draw their own number line and make their own marks. | $\begin{aligned} & 3+4=7 \\ & 5120 \end{aligned}$ |
| Bead strings will be used to support addition. | $5+3=8$ |
| Children will use a tens frame to support addition, learn number bonds and near number facts including regrouping. |  |
| Use a range of practical resources to solve addition. | $4+5=9$ |
| Children will use the part whole model to add two numbers together. <br> Children will use the part whole model to find missing numbers. |  |

## West Felton CofE Calculation Policy

| Children will solve one-step addition problems using concrete objects and/or pictorial representations. Children will use 'story' to help solve word problems and additions. | I have 5 sweets and my brother gives me 3 more, how many do I have altogther? |
| :---: | :---: |
| Children will begin to learn the inverse relationship between addition and subtraction using tens frames and fact families. |  |
| Children will begin to understand the place value of twodigit numbers through partitioning and regrouping. | Lcan add two digtt numbers <br> Count the ones and then the tens 品ㅁㅁㅁ |
| Mental Strategies: <br> - Know addition can be carried out in any order (commuta <br> - Add 1 and 2 digit numbers to 20 including 0 <br> - Number bonds to 20 related number facts <br> - Adding 10 to a single digit number <br> - Identify 1 more than a given number |  |

## West Felton CofE Calculation Policy

## Addition

## Year 2:

-solve problems with addition:
-using concrete objects and pictorial representations, including those involving numbers, quantities and measures
-applying their increasing knowledge of mental and written methods
-recall and use addition facts to 20 fluently, and derive and use related facts up to 100
-add numbers using concrete objects, pictorial representations, and mentally, including:
-a two-digit number and ones
-a two-digit number and tens
-two two-digit numbers
-adding three one-digit numbers

- show that addition of two numbers can be done in any order (commutative)
-recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.


## Key Vocabulary: <br> Key Resources:

number bonds, add, more, plus, make, sum, total, altogether, inverse, near double, equals, missing number, is the same as (including equals sign), parts and wholes, one more, two more... ten more, tens and ones (units), multiples, how many more to make...?, how many more is... than...?, how much more is...?

| Method: <br> (Continuing to build on from previous years) | Example/ Representation: <br> (Continuing to build on from previous years) |  |
| :---: | :---: | :---: |
| Children will use the hundred square to add multiplies of 10 and near multiples understanding the place value. |  |  |

Children will count on and use known number facts to solve 2 -digit and 1-digit addition, addition of 3 numbers and 10 or near multiple.
Children will use concrete objects and pictorial representations to add: a 2-digit number and ones, three 1-digit numbers and a 2-digit number and multiples of 10.

Tens frame, number line and squares, counting equipment e.g. cubes and counters, bead strings and Diennes/ Base 10.


## West Felton CofE Calculation Policy

```
Mental Strategies:
-Know that addition is the inverse of subtraction
-Add numbers mentally, including: a 2-digit number and units, a multiple of 10 to a 2-digit number, two 2-digit numbers, three
1-digit numbers.
- Use knowledge of inverse to check calculations and solve missing number problems
- Use knowledge of number bonds to 10 to calculate numbers bonds to 100
- Count on in tens from any given number (e.g 19-29-39-49 etc).
```


## West Felton CofE Calculation Policy

## Addition <br> Lower Key Stage 2

## Year 3:

-add numbers mentally, including:
Year 4:
-a three-digit number and ones
-add numbers with up to 4 digits using the formal written methods of columnar
-a three-digit number and tens
-estimate and use inverse operations to check answers to a -a three-digit number and hundreds
-add numbers with up to three digits, using formal written methods of columnar addition
calculation
-solve addition two-step problems in contexts, deciding which operations and methods to use and why
-estimate the answer to a calculation and use inverse operations to check answers -solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction.

## Key Vocabulary:

add, increase, total, plus, sum, more, altogether, column addition, estimate, inverse, double, near double, one

## Key Resources:

Dienes/ base ten, number lines, number squares, place value cards, grids and counters, bar model, money. more, ten more... one hundred more, how many more to make ...? how many more is... than ...? how much more is...?, tens boundary, hundreds boundary

| Method: <br> (Continuing to build on from previous years) | Example/ Representation: <br> (Continuing to build on from previous years) |
| :---: | :---: |
| Children will continue to reinforce place value through partitioning, using practical equipment to support the process of addition. |  |
| Children will use place value counters/ Dienes to aid addition with or without regrouping. Children will use the place value grids to add together the value. | Make both numbers on the place value grid. <br> Collate the ones (units) to make another ten. |
| Children will use number lines to add with partitioning, starting with the larger number and making jumps in tens and ones values. | $38+86=124$ |
| Children will use various written methods for addition with or without regrouping. <br> Children can use expanded column addition. <br> Children can use column addition with carrying the value for bridging ten. | $146+527=$ 146 146 <br> $100+40+6$ +527  <br> $500+20+7$  13 <br>   60 <br> $600+70+3=673$ 600 1 <br>   673 |

## West Felton CofE Calculation Policy



## West Felton CofE Calculation Policy

| Addition |  |
| :---: | :---: |
| Year 5: <br> -add whole numbers with more than 4 digits, including using formal written methods (columnar addition) -add numbers mentally with increasingly large numbers -use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy -solve addition multi-step problems in contexts, deciding which operations and methods to use and why. | Year 6: <br> -perform mental calculations, including with mixed operations and large numbers -use their knowledge of the order of operations to carry out calculations involving the four operations -solve addition multi-step problems in contexts, deciding which operations and methods to use and why |
| Key Vocabulary: <br> order of operations, column addition, add, in total, answer, tens boundary, hundreds boundary, thousands boundary, millions boundary, units boundary, tenths boundary, hundredths boundary, decimal place, inverse. | Key Resources: <br> Dienes/ base ten, number lines, number squares, place value cards, grids and counters, bar model, money, calculators. |
| Method: <br> (Continuing to build on from previous years) | Example/ Representation: <br> (Continuing to build on from previous years) |
| Children will add numbers with more than 4-digits using the formal written method of column addition, including adding several numbers. |  |
| Children will add decimal numbers with the same number of decimal places using the formal written method column addition. <br> Children will add decimal numbers with a different number of decimal places using the formal written method column addition using 0 as a place value holder. | $\begin{array}{ll} 3.17+4.25= & 3.46+3.792 \\ \begin{array}{ll} 3.17 \\ +4.25 \\ \hline & 3.469 \\ \hline & \frac{3.792}{7.252} \\ \hline x & \begin{array}{l} \text { Zero used as } \\ \text { a place value } \\ \text { holder. } \end{array} \\ \hline \end{array} \end{array}$ |
| Our aim is that, by the end of Y6, children use mental methods (with jottings) when appropriate, but for other calculations, they use an efficient, formal written method accurately and with confidence. |  |

## EYFS - Reception

Children at the expected level of development will:
-Have a deep understanding of number to 10 , including the composition of each number
-Subitise (recognise quantities without counting) up to 5
-Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts.
-Verbally count beyond 20, recognising the pattern of the counting system
-Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity

| Key Vocabulary: <br> take (away), leave, how many are left/left over?, how <br> many have gone?, one less, two less... ten less..,how <br> many fewer is... than...?, difference between, is the same <br> as, subitize | Key Resources: <br> Physical/ concrete counting objects, number lines, Numicon, tens <br> frame, Numberblocks |
| :--- | :--- |
| Method: | Example/ Representation: |
| Using a range of practical resources and real life contexts, <br> pupils develop their understanding of the concept of <br> subtraction as taking away through counting activities. | I had 9 sweets and I ate 2. How many have I got left? |
| Children are introduced to the addition symbol (-) and use <br> pictures/ diagrams to represent the calculation. |  |
| Children will use a number line/ early diagrams to <br> support counting back for subtraction. |  |
| Children can use physical counting objects or fingers to <br> complete a subtraction. <br> Children can join in number stories to support <br> subtraction. |  |

## West Felton CofE Calculation Policy

Children, using the shape pattern, will identify subtraction as removing a segment.


## Mental Strategies:

- Develop a mental image of the number system
- Children count backwards using familiar number rhymes (e.g '10 Green Bottles', ‘5 Fat Sausages')
- Count backwards from different starting points


## West Felton CofE Calculation Policy

## Subtraction

## Year 1:

-read, write and interpret mathematical statements involving subtraction (-), and equals (=) signs

- represent and use number bonds and related addition facts within 20
- add one-digit and two-digit numbers to 20, including zero
- solve one-step problems that involve addition, using concrete objects and pictorial representations, and missing number problems such as $7=2+$


## Key Vocabulary: $\quad$ Key Resources:

subtract, take away, minus, leave, how many fewer is...than..?, how much less is..?, how many are left/left over?, how many are gone?, one less, two less, ten less..., how many fewer is... than...?, how much less is...? =, equals, sign, is the same as, count on, count back, difference between, how many more is...than..?, how much more is..?

| Method: <br> (Continuing to build on from previous years) | Example/ Representation: <br> (Continuing to build on from previous years) |
| :---: | :---: |
| Children will be taught to use a number line to support subtraction. <br> Children will be taught how to solve simple subtraction stories with the support of a 100 number square. <br> Encourage children to draw their own number line and make their own marks. |  |
| Bead strings will be used to support subtraction. |  |
| Children will use a tens frame to support subtraction, learn number bonds and near number facts including regrouping. | $8-3=$ |
| Use a range of practical resources to solve take aways. | Take the 1 cube away, count how many remain. |
| Children will use the part whole model to subtract two numbers together. <br> Children will use the part whole model to find missing numbers. | $\sqrt{2}$ <br> 级苗 <br> N 2 <br> $5-\square=3 \square-2=3$ <br> Efure cive |


| Children will solve one-step subtraction problems using concrete objects and/or pictorial representations. Children will use 'story' to help solve word problems. | I had 5 flowers but 3 died. How may were still growing? |
| :---: | :---: |
| Children will begin to learn the inverse relationship between addition and subtraction using tens frames and fact families. |  |
| Mental Strategies: <br> - Subtract 1 and 2 digit numbers to 20 including 0 <br> - To know that subtraction is not commutative and that the larger number must always come first <br> - Use knowledge of number bonds to 10 and 20 to reason ( $9+1=10$ so $10-9=1$ and $10-1=9$ ) |  |

## West Felton CofE Calculation Policy

## Year 2:

-solve problems with subtraction:
-using concrete objects and pictorial representations, including those involving numbers, quantities and measures
-applying their increasing knowledge of mental and written methods
-recall and use subtraction facts to 20 fluently, and derive and use related facts up to 100
-subtract numbers using concrete objects, pictorial representations, and mentally, including:
-a two-digit number and ones
-a two-digit number and tens
-two two-digit numbers
-know that subtraction of one number from another cannot be done in any order unlike addition.
-recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.


Children will solve simple problems using concrete objects and pictorial representations, including those involving number, quantities and measures.

## Mental Strategies:

- To know that subtraction is the inverse of addition
- Use knowledge of inverse to check calculations and solve missing number problems
- Subtract numbers mentally, including:
-subtracting units from a 2-digit number
-subtracting a multiple of 10 from a 2-digit number
-subtracting a 2 -digit number from another 2-digit number
- Recall and use subtraction facts to 20 fluently
- Use knowledge of number bonds to 100 (multiples of 10 ) to reason ( $40+60=100$ so $100-60=40$ and $100-40=60$ )


## Subtraction

## Lower Key Stage 2

## Year 3:

-subtract numbers mentally, including:
-a three-digit number and ones
-a three-digit number and tens
-a three-digit number and hundreds
-subtract numbers with up to three digits, using formal written methods of columnar subtraction -estimate the answer to a calculation and use inverse operations to check answers
-solve problems, including missing number problems, using number facts, place value, and more complex subtraction.

## Key Vocabulary:

leave, subtract, less, minus, column subtraction, inverse, decomposition, exchange, how many are left/left over?, difference between, how many more/fewer is... than...?, how much more/less is...?, Is the same as, equals, sign. multiples of tens and hundreds.

## Method:

## (Continuing to build on from previous years)

Children will continue to subtract using concrete objects to support subtraction such as Dienes/ Base 10 and Place Value Counters when there is no regrouping.

## Key Resources:

Dienes/ base ten, number lines, number squares, place value cards, grids and counters, bar model, money.

## Example/ Representation:

(Continuing to build on from previous years)

Children can continue to make jumps backwards using number lines and partitioning the take away amount into tens and ones.

## Year 4:

-subtract numbers with up to 4 digits using the formal written methods of columnar subtraction where appropriate.
-estimate and use inverse operations to check answers to a calculation
-solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.


## West Felton CofE Calculation Policy

| Alternatively, children can use the number line to jump up to find the difference. | $£ 5.60-£ 3.99=$  |
| :---: | :---: |
| Children will use the expanded method and partition the second number into their place value to subtract. | $237-112=237$  <br> $=237-100=137$  <br> $=137-10=127$ -112 <br> $=127-2=125$ 5 <br>  20 <br>  100 |
| Children will subtract numbers with up to 4-digits using the formal written method of column subtraction with decomposition. | $\begin{aligned} & 3271-1691= \\ & { }^{2} \not 272171 \\ & -1691 \\ & \hline \frac{1580}{} \\ & \hline \end{aligned}$ |

## West Felton CofE Calculation Policy

| Subtraction |  |
| :---: | :---: |
| Year 5: <br> -subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction) <br> -subtract numbers mentally with increasingly large numbers <br> -use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy -solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why. | Year 6: <br> -perform mental calculations, including with mixed operations and large numbers -use their knowledge of the order of operations to carry out calculations involving the four operations -solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why |
| Key Vocabulary: <br> efficient written method, subtract, subtraction, minus, decrease, difference between, inverse, decimals, units and tenths boundary, column subtraction, decomposition, exchange. | Key Resources: <br> Dienes/ base ten, number lines, number squares, place value cards, grids and counters, bar model, money, calculators. |
| Method: <br> (Continuing to build on from previous years) | Example/ Representation: <br> (Continuing to build on from previous years) |
| Children will subtract numbers with more than 4-digits using the formal written method of column subtraction with decomposition (borrowing). |  |
| Children will subtract decimal numbers with the same number of decimal places with decomposition (borrowing). | $\begin{aligned} & 4 \cdot 63-2 \cdot 91= \\ & x^{3} \cdot 63 \\ & -2 \cdot 91 \\ & \hline 1 \cdot 72 \\ & \hline \end{aligned}$ $\begin{array}{r} \text { K } 813^{3} \mathrm{KIV}^{\prime} \mathrm{kg} \\ -\quad 36 \cdot 08 \mathrm{~kg} \\ \hline 69 \cdot 339 \mathrm{~kg} \end{array}$ <br> Empty decimal places can be filled with a zero to show the place value. |
| Our aim is that, by the end of Y6, children use mental methods (with jottings) when appropriate, but for other calculations, they use an efficient, formal written method accurately and with confidence. |  |

## West Felton CofE Calculation Policy

## Multiplication

## EYFS - Reception:

-Explore and represent patterns within numbers up to 10 , including evens and odds, double facts and how quantities can be distributed equally.

| Key Vocabulary: | Key Resources: |
| :---: | :---: |
| Double, the same as, equal groups. | Physical counting objects, picture representations. |
| Method: | Example/ Representation: |
| Children will count groups of the same number of objects and add them together. <br> The children learn about grouping in practical contexts and through pictorial representations. |  |
| Children will solve simple problems involving doubling. | Double the spider legs. |
| Children use songs, games and real life contexts to count in repeated groups of the same size. $(2 s, 10 s)$ |  |
| Mental Strategies: <br> - Develop a mental image of the number system. <br> - Understand the value of a number <br> - Counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s . |  |

## Multiplication

## Key Stage 1 - Year 1 and Year 2:

Year 1: solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.
Year 2: recall and use multiplication facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers
-calculate mathematical statements for multiplication within the multiplication tables and write them using the multiplication $(\times)$, division $(\div)$ and equals ( $=$ ) signs
-show that multiplication of two numbers can be done in any order (commutative)
-solve problems involving multiplication, using materials, arrays, repeated addition, mental methods, and multiplication facts, including problems in contexts.

## Key Vocabulary:

odd, even, count in twos, fives, count in tens (forwards from/backwards from), how many times? lots of, groups of, once, twice, five times, ten times, multiple of, times, multiply, multiply by, array, double, repeated addition.

## Method: (building on from previous years)

Children will count groups of the same number of objects and add them together or use mental knowledge counting in steps of $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .
The children learn about grouping in practical contexts, through pictorial representation.

## Key Resources:

Physical counting objects, picture representations.

## Example/ Representation: <br> (building on from previous years)

Can you make the cubes into towers of 2 ?
Put the teddy bears into groups of 3 .

Children will recognise and complete patterns and
sequences involving multiples of 2,5 and 10 .

| Children will be able to represent a multiplication <br> calculation using an array and write the multiplication <br> symbol within a number sentence. Children will also <br> understand that multiplication can be carried out in any <br> order (commutative). |
| :--- | :--- |
| Children will calculate a multiplication by recalling $2 \mathrm{~s}, 5 \mathrm{~s}$ <br> and 10 s in written form, using fingers to aid counting if <br> needed. |

By the end of Key Stage 1 children should be fluent in the times tables of 1, 2, 5 and 10.
Children should be able to recall, solve written calculations for multiplication and division within these times tables.

In the Summer Term of Year 2, children will begin to learn their 3 times table.

## West Felton CofE Calculation Policy

## Multiplication

## Lower Key Stage 2

## Year 3:

-recall and use multiplication facts for the 3, 4 and 8 multiplication tables
-write and calculate mathematical statements for multiplication using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods

- solve problems, including missing number problems, involving multiplication, including positive integer scaling problems and correspondence problems in which $n$ objects are connected to m objects.


## Key Vocabulary:

multiply, times, groups of, equal groups of, multiple of, multiplied by, estimate, inverse, grid multiplication, expanded column multiplication, partition, commutative, associative, product, short multiplication.

| Method: <br> (Continuing to build on previous years) | Example/ Representation: <br> (Continuing to build on previous years) |
| :---: | :---: |
| Children will learn to calculate doubles of 2-digit numbers through partitioning. | Double numbers to 50 by bartitioning into tens and ones, doubling and recombbining e.g. to double 22 , fistspartion into 20 and 6 , then: <br> DOUBLE $20=40$ <br> DOUBLE 6=12 <br> $40+12=52$ |
| Repeated addition: Counting in $3 s, 4 s$ and $8 s$ and continue to consolidate $2 s, 5 s$ and 10 s . Moving onto further times tables. This can be done with physical objects in groups, bead strings or using a number line and colouring pattern on 100 square. |  |
| Children will be taught to multiply numbers ( $\mathrm{TO} \times \mathrm{O}$ ) through partitioning and the formal written method of grid multiplication, using concrete objects where necessary to consolidate. |  |

## West Felton CofE Calculation Policy

| Children will learn and use number facts up to $12 \times 12$ (end of Year 4). | A multiplication square can be useful for finding commutative facts, spotting easy patterns and identifying tricky facts that need to be learnt. |
| :---: | :---: |
| Children will be taught to multiply numbers ( $\mathrm{TO} \times \mathrm{O}$ ) using the formal written method of expanded column multiplication and make the link to grid method. | $\begin{aligned} & 23 \times 4=92 \\ & 23 \\ & \times \quad 4 \\ & \hline 12(4 \times 3) \\ & +\quad 80(4 \times 20) \\ & \hline 92 \\ & \hline \end{aligned}$ |
| Children will be taught to multiply numbers ( $\mathrm{TO} \times \mathrm{O}$ ) by partitioning the 2-digit number and using two short multiplications along with addition to solve the problem. | $\begin{aligned} & 24 \times 7=168 \\ & 20 \times \frac{4}{140} \\ & \times \frac{7}{140} \frac{7}{28}+\frac{28}{168} \end{aligned}$ |
| Children will be taught to multiply numbers (HTO \& O) by partitioning the 3-digit number and using two short multiplications along with addition to solve the problem. | $\begin{array}{r} 235 \times 6=1410 \\ \begin{array}{r} 200 \\ \times \quad 30 \\ \times 66 \\ \hline 200 \\ \hline 180 \\ \hline \end{array} \begin{array}{r} 1200 \\ \hline 180 \\ \hline 140 \\ \hline \end{array} \end{array}$ |
| Children will be taught to multiply numbers (HTO x O) using the formal written method of short multiplication. | $\begin{aligned} & 235 \times 6=1410 \\ & 235 \\ & \times \quad 36 \\ & \hline 410 \\ & \hline 23 \end{aligned}$ |

By the end of Year 3 children should continue to build on existing knowledge and now know: $3 x, 6 x, 4 x, 8 x$
By the end of Year 4 children should continue to build on existing knowledge and now know: $7 x, 9 x, 11 x, 12 x$
Children should be able to recall, solve written calculations for multiplication and division within these times tables.

## Multiplication <br> Upper Key Stage 2

## Year 5:

-identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers -know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers -establish whether a number up to 100 is prime and recall prime numbers up to 19
-multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers -multiply numbers mentally drawing upon known facts -multiply whole numbers and those involving decimals by 10, 100 and 1000

## Key Vocabulary:

composite numbers, prime number, prime factor, cube number, square number, derive, factor pairs, formal written method, times, multiply, multiplied by, multiple of, product, short multiplication, partition, long multiplication, decimal place, ones/ units, tenths and hundreds

| Method: <br> (Continuing to build on previous years) | Example/ Representation: (Continuing to build on previous years) |
| :---: | :---: |
| Children can multiply (TO $\times$ TO) in expanded form or grid method through partitioning. | $23 \times 13$ $=299$   <br> 23    <br> $\times \underline{13}$ $\times$ 20 3 <br> $9(3 \times 3)$    <br> $60(20 \times 3)$    <br> $30(3 \times 10)$ 10 200 30 <br> $\underline{200}(20 \times 10)$    <br> $\underline{299}$    |
| Children will be taught to use the formal written method long multiplication for ( $\mathrm{TO} \times \mathrm{TO}$ ) and ( $\mathrm{HTO} \times \mathrm{TO}$ ). |  |
| Children will be taught to multiply numbers (ThHTO $\times$ O) using the formal written method of short multiplication. <br> Moving onto children being taught to multiply numbers (ThHTO x TO) using the formal written method of long multiplication. |  |

## West Felton CofE Calculation Policy

| Children will learn to multiply decimal numbers with whole numbers and by 10, 100 and 100 and decimal numbers. |  | $\begin{array}{r} 1 \\ 53.2 \\ \times 24.0 \\ \hline 212.8 \\ 1064.0 \\ \hline 1276.8 \end{array}$ |
| :---: | :---: | :---: |

Our aim is that, by the end of Y6, children use mental methods (with jottings) when appropriate, but for calculations that they cannot do mentally, they use an efficient, formal written method accurately and with confidence.

By the end of Years 5 and 6 children should be fluent in their recall and written knowledge of all times tables facts.

## West Felton CofE Calculation Policy

## EYFS - Reception:

-Explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distributed equally.

| Key Vocabulary: <br> halve, half, share, share equally, groups | Key Resources: <br> Physical counting objects and pictorial representations. <br> Method: |
| :--- | :--- |
| Ehildren experience early division by sharing objects and <br> counting how many in each group. | 6 shared between 2. |
| Children will solve problems including halving and sharing. | Share the dots onto the ladybird to find half. |

## Mental Strategies:

- Develop a mental image of the number system.
- Understand the value of a number


## Division

## Key Stage 1 - Year 1 and Year 2:

Year 1: solve one-step problems involving division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

## Year 2:

-recall and use division facts for the 2,5 and 10 multiplication tables.
-calculate mathematical statements for division within the multiplication tables and write them using the division
$(\div)$ and equals
(=) signs
-show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot.
-solve problems involving division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

| Key Vocabulary: halve, share, share equally, groups, <br> equal groups of, divide, divided by, left, left over. | Key Resources: <br> Physical counting objects, picture representations. <br> Method: <br> (building on from previous years) |
| :--- | :--- |
| Children will understand equal groups and share items <br> out in play scenarios. <br> Children will be given a word problem to complete either <br> practically or using pictorial representations. | (bhare 12 cakes between 3 people equally: |

## Mental Strategies:

- Count forwards and backwards in multiples of $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .
- To know that division is the inverse of multiplication
- Recall division facts for the 2,5 and 10 times tables
- Recall halves for even numbers up to and including 20


## West Felton CofE Calculation Policy

## Division Lower Key Stage 2

## Year 3:

-recall and use division facts for the 3,4 and 8
Year 4:
multiplication tables
-write and calculate mathematical statements for division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods -solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.

## Key Vocabulary:

divided by, divide, divided into, grouping, short division, remainder, inverse, factor, divisible by, short division.

| Method: <br> (Continuing to build on previous years) | Example/Representation: <br> (Continuing to build on previous years) |
| :--- | :--- |
| Children will link division to multiplication (inverse) <br> through arrays of concrete objects or pictorial <br> representations. | Eg $15 \div 3=55 \times 3=15$ <br> $15 \div 5=33 \times 5=15$ |
| Children can physically group concrete objects with no |  |


| Children cainders. |
| :--- |
|  |
|  |
| Children will learn to use the short division method and <br> their knowledge of the multiples with no remainders. |



## West Felton CofE Calculation Policy

| Division |  |
| :---: | :---: |
| Upper Key Stage 2 |  |
| Year 5: <br> -divide numbers mentally drawing upon known facts -divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context - divide whole numbers and those involving decimals by 10,100 and 1000 | Year 6: <br> -divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context -divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context -perform mental calculations, including with mixed operations and large numbers -use their knowledge of the order of operations to carry out calculations involving the four operations |
| Key Vocabulary: <br> divided by, divide, divided into, grouping, short division, remainder, inverse, factor, divisible by, short division. | Key Resources: <br> arrays, place value counters, number lines, grids, Dienes/ Base 10, bead strings. |
| Method: <br> (Continuing to build on previous years) | Example/ Representation: <br> (Continuing to build on previous years) |
| Continue to practice formal written method with or without remainders. |  <br> by the divisor. |
| Children will learn to use long multiplication when dividing with numbers greater than 12. <br> Children will express remainders as fractions or decimals. | $432 \div 15$ becomes $\frac{12}{15}=\frac{4}{5}$ <br> 1  2 8 $r$ <br>  5 4 3 2 <br> 3 0 0   <br>   1 3 2 <br>   1 2 0 <br>   1 2  <br> The r12 is converted to a decimal, using the knowledge that $1 / 5=0.2$ therefore $0.2 \times 4=0.8=\frac{4}{5}$ <br> 15 |
| Our aim is that, by the end of Y6, children use mental methods (with jottings) when appropriate, but for calculations that they cannot do mentally, they use an efficient, formal written method accurately and with confidence. |  |

